SQL优化技巧 - OR连接的条件重写为UNION
问题定义
如果使用OR连接两个查询条件,数据库优化器有可能无法使用索引来完成查询。譬如对于以下的SQL语句,
select * from customer where c_phone like '139%' or c_name = 'Ray'
如果这两个字段上都有索引,可以把他们重写为UNION
查询,以便使用索引提升查询性能。
select * from customer where c_phone like '139%'
union
select * from customer where c_name = 'Ray'
但是这种转换并不总是能够提升查询性能,它需要一定的适用条件,并需要经过基于代价的估算。
如果数据库支持
INDEX MERGING
(请参考如和创建高效的索引),也可以调整数据库相关参数启用INDEX MERGING
优化策略来提升数据库性能。
适用条件
- OR连接的条件必须是可以利用索引的
- 重写后的UNION语句估算代价比原SQL小
- 如果OR分支的条件是互斥的,那么重写为UNION ALL
案例分析
案例1. 条件分支无法利用索引,不进行重写
select * from customer where c_phone = '1' or c_phone like '%139%'
解析: 其中一个条件c_phone like '%139%'
无法利用索引,重写后仍然需要全表扫描,PawSQL不进行重写
案例2. 过滤条件选择率足够低,不进行重写
select * from customer where custkey = 1 and (c_phone = '1' or c_phone like '%139%')
解析:custkey
是主键,custkey = 1
唯一定位一条记录,所以无需进行重写
案例3. 满足重写条件,进行重写
select distinct * from customer where c_phone like '139%' or c_name = 'Ray'
解析: 两个条件都可以利用索引,且选择率低于10%,可以进行重写,由于union
可以去重,所以原SQL中的distinct
在重写后可以去除。
select * from customer where c_phone = '1'
union
select * from customer where c_phone like '139%'
案例4. OR条件分支互斥,重写为UNION ALL
select * from customer where custkey = 1 or (custkey = 2 and c_phone like '139%')
解析:由于两个条件分支c_custkey = 2 and c_phone like '139%'
和 c_custkey = 1
互斥,因此重写为UNION ALL
select * from customer where c_custkey = 2 and c_phone like '139%'
union all
select * from customer where c_custkey = 1
案例5. 包含order by
子句和limit
子句,满足重写条件
select * from orders o
where O_ORDERDATE>='2021-01-01' and (O_ORDERPRIORITY = 1 or O_SHIPPRIORITY = 1)
order by O_ORDERDATE desc limit 10
**解析:**虽然O_ORDERPRIORITY = 1
和 O_SHIPPRIORITY = 1
的选择率较高,但是由于通过索引可以避免排序,总体代价较低,PawSQL进行了重写优化.
select *
from (
(select /*QB_2*/ *
from orders as o
where o.O_ORDERDATE >= '2021-01-01'
and o.O_SHIPPRIORITY = 1
order by o.O_ORDERDATE desc limit 10)
union
(select /*QB_1*/ *
from orders as o
where o.O_ORDERDATE >= '2021-01-01'
and o.O_ORDERPRIORITY = '1'
order by o.O_ORDERDATE desc limit 10
)
) as PawDT_1702555889039
order by PawDT_1702555889039.O_ORDERDATE desc limit 10
案例6. 包含分组和聚集,满足重写条件
select O_ORDERDATE, count(1) from orders o
where O_ORDERDATE>='2021-01-01' and (O_ORDERPRIORITY = 1 or O_SHIPPRIORITY = 1)
group by O_ORDERDATE
**解析:**虽然O_ORDERPRIORITY = 1
和O_SHIPPRIORITY = 1
的选择率较高,但是由于通过索引可以避免排序,总体代价较低,PawSQL进行了重写优化.
select PawDT_1702884016144.O_ORDERDATE, count(1)
from (
select /*QB_2*/ o.O_ORDERDATE, o.O_ORDERKEY
from tpch_pkfk.orders as o
where o.O_ORDERDATE >= '2021-01-01'
and o.O_SHIPPRIORITY = 1
union
select /*QB_1*/ o.O_ORDERDATE, o.O_ORDERKEY
from tpch_pkfk.orders as o
where o.O_ORDERDATE >= '2021-01-01'
and o.O_ORDERPRIORITY = '1'
) as PawDT_1702884016144
group by PawDT_1702884016144.O_ORDERDATE
性能验证
案例5性能提升900倍
- 优化前执行计划(执行时间432.322ms)
-
优化后执行计划(执行时间0.189ms)
案例6性能提升20倍
- 优化前执行计划(2.816ms)
- 优化后执行计划(0.131ms)
关于PawSQL
PawSQL专注数据库性能优化的自动化和智能化,支持MySQL,PostgreSQL,openGauss,Oracle等,提供的SQL优化产品包括
- PawSQL Cloud,在线自动化SQL优化工具,支持SQL审查,智能查询重写、基于代价的索引推荐,适用于数据库管理员及数据应用开发人员,
- PawSQL Advisor,IntelliJ 插件, 适用于数据应用开发人员,可以IDEA/DataGrip应用市场通过名称搜索“PawSQL Advisor”安装。
- PawSQL Engine, 是PawSQL系列产品的后端优化引擎,可以独立安装部署,并通过http/json的接口提供SQL优化服务。PawSQL Engine以docker镜像的方式提供部署安装。
联系我们
- 邮件:service@pawsql.com
- Twitter: https://twitter.com/pawsql
- 扫描关注PawSQL公众号